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We present a minimal spiking network that can polychronize, that is,
exhibit reproducible time-locked but not synchronous firing patterns
with millisecond precision, as in synfire braids. The network consists
of cortical spiking neurons with axonal conduction delays and spike-
timing-dependent plasticity (STDP); a ready-to-use MATLAB code is
included. It exhibits sleeplike oscillations, gamma (40 Hz) rhythms,
conversion of firing rates to spike timings, and other interesting regimes.
Due to the interplay between the delays and STDP, the spiking neu-
rons spontaneously self-organize into groups and generate patterns
of stereotypical polychronous activity. To our surprise, the number of
coexisting polychronous groups far exceeds the number of neurons in
the network, resulting in an unprecedented memory capacity of the
system. We speculate on the significance of polychrony to the theory of
neuronal group selection (TNGS, neural Darwinism), cognitive neural
computations, binding and gamma rhythm, mechanisms of attention,
and consciousness as “attention to memories.”

1 Introduction

The classical point of view that neurons transmit information exclusively
via modulations of their mean firing rates (Shadlen & Newsome, 1998;
Mazurek & Shadlen, 2002; Litvak, Sompolinsky, Segev, & Abeles, 2003)
seems to be at odds with the growing empirical evidence that neurons can
generate spike-timing patterns with millisecond temporal precision in vivo
(Lindsey, Morris, Shannon, & Gerstein, 1997; Prut et al., 1998; Villa, Tetko,
Hyland, & Najem, 1999; Chang, Morris, Shannon, & Lindsey, 2000; Tetko &
Villa, 2001) and in vitro (Mao, Hamzei-Sichani, Aronov, Froemke, & Yuste,
2001; Ikegaya et al., 2004). The patterns can be found in the firing sequences
of single neurons (Strehler & Lestienne, 1986; de Ruyter van Steveninck,
Lewen, Strong, Koberle, & Bialek, 1997; Reinagel & Reid, 2002; Bryant &
Segundo, 1976; Mainen & Sejnowski, 1995) or in the relative timing of spikes
of multiple neurons (Prut et al., 1998; Chang et al., 2000) forming a functional
neuronal group (Edelman 1987, 1993). Activation of such a neuronal group
can be triggered by stimuli or behavioral events (Villa et al., 1999; Riehle,
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Grün, Diesmann, & Aertsen, 1997). These findings have been widely used
to support the hypothesis of temporal coding in the brain (Buzsaki, Llinas,
Singer, Berthoz, & Christen, 1994; Abeles, 1991, 2002; Diesmann, Gewaltig,
& Aertsen, 1999; Bienenstock, 1995; Miller, 1996a, 1996b; see also special
issue of NEURON (September 1999) on the binding problem).

In addition to the growing empirical evidence of precise spike-timing
dynamics in the brain, there is growing theoretical interest in the artificial
neural networks community to spike timing as an additional variable in
the information processing by the brain. See special issue of IEEE TNN on
pulse-coupled neural networks (May 1999); special issue of Neural Networks
on spiking neurons (July 2001); and special issue of IEEE TNN on temporal
coding (July 2004).

1.1 Spikes. When considering spiking neurons, most researchers em-
phasize synchrony of firing. Indeed, it is widely believed that if two or more
neurons have a common postsynaptic target and fire synchronously, then
their spikes arrive at the target at the same time, thereby evoking potent
postsynaptic responses. If the neurons fire asynchronously (i.e., randomly),
their spikes arrive at the postsynaptic target at different times, evoking
only weak or no response. An implicit assumption here is that the axonal
conduction delays are negligible or equal.

1.2 Delays. A careful measurement of axonal conduction delays in the
mammalian neocortex (Swadlow 1985, 1988, 1992) showed that they could
be as small as 0.1 ms and as large as 44 ms, depending on the type and
location of the neurons. A typical distribution of axonal propagation delays
between different pairs of cortical neurons (depicted in Figure 1A) is broad,
spanning two orders of magnitude. Nevertheless, the propagation delay
between any individual pair of neurons is precise and reproducible with a
submillisecond precision (see Figure 1B; Swadlow 1985, 1994). Why would
the brain maintain different delays with such precision if spike timing were
not important?

The majority of computational neuroscientists discard delays as a nui-
sance that only complicates modeling. From a mathematical point of view,
a system with delays is not finite- but infinite-dimensional,1 which poses
some mathematical and simulation difficulties.

In this letter, we argue that an infinite dimensionality of spiking networks
with axonal delays is not a nuisance but an immense advantage that results

1For example, the simplest delay equation x′ = −x(t − 1), x ∈ R has infinite dimension
because to solve it, we need to specify the initial condition on the entire interval [−1, 0],
and not just in the point t = 0. Delayed dynamical systems can exhibit astonishingly rich
and complex dynamics (e.g., see Foss & Milton, 2000); however, the mathematical theory
of such equations is still in its infancy (Wiener & Hale, 1992; Bellen & Zennaro, 2003).
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Figure 1: (A) Distribution of experimentally measured conduction delays of
cortical axons running through the corpus collosum (antidromic stimulation,
modified from Figure 3A of Swadlow, 1985). (B) Superposition of two voltage
traces recorded in vivo shows the submillisecond precision of axonal conduction
delays in the same pair of neurons (modified from Figure 4 of Swadlow, 1994).
(C) Summary of experimental evidence of axonal conduction delays in different
neurons and species.

in an unprecedented information capacity. In particular, there are stable
firing patterns that are not possible without the delays.

1.3 Polychronization. To illustrate the main idea, consider neuron a
in Figure 2A receiving inputs from neurons b, c, and d with different
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Figure 2: (A) Synaptic connections from neurons b, c, and d to neurons a and
e have different axonal conduction delays. (B–D) Firings of neurons are de-
noted by the vertical bars. Each arrow points to the spike arrival time to the
postsynaptic neuron. (B) Synchronous firing is not effective in eliciting a potent
postsynaptic response since the spikes arrive at the postsynaptic neurons at
different times. (C) The spiking pattern with neuron d firing at 0 ms, neuron c
firing at 4 ms, and neuron b firing at 8 ms is optimal to excite neuron a because
the spikes arrive at a simultaneously. (D) The reverse order of firing is optimal
to excite neuron e.

conduction delays. Synchronous firing, as in Figure 2B, is not effective to
excite neuron a, because the spikes arrive at this neuron at different times.
To maximize the postsynaptic response in neuron a, the presynaptic neu-
rons should fire with the temporal pattern determined by the delays and
depicted in Figure 2C so that the spikes arrive at neuron a simultaneously.
A different spike-timing pattern, as in Figure 2D, excites neuron e.

We see that depending on the order and the precise timing of firing, the
same three neurons can evoke a spike in either neuron a or neuron e, or
possibly in some other neuron not shown in the figure. Notice how the
conduction delays make this possible.

If b, c, and d are sensory neurons driven by an external input, then the
simple circuit in Figure 2 can recognize and classify simple spatiotemporal
patterns (Hopfield, 1995; Seth, Mckinstry, Edelman, & Krichmar, 2004a).
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Indeed, sensory input as in Figure 2C results in (d,c,b,a) firing as a group
with spike-timing pattern (0, 4, 8, 10) ms. Sensory input as in Figure 2D
results in a different set of neurons: (b,c,d,e), firing as a group with a different
spike-timing pattern, namely, (0, 3, 7, 9) ms.

Since the firings of these neurons are not synchronous but time-locked
to each other, we refer to such groups as polychronous, where poly means
many and chronous means time or clock in Greek. Polychrony should be dis-
tinguished from asynchrony, since the latter does not imply a reproducible
time-locking pattern, but usually describes noisy, random, nonsynchronous
events. It is also different from the notion of clustering, partial synchrony
(Hoppensteadt & Izhikevich, 1997), or polysynchrony (Stewart, Golubit-
sky, & Pivato, 2003), in which some neurons oscillate synchronously while
others do not.

1.4 Networks. To explore the issue of spike timing in networks with
conduction delays, we simulated an anatomically realistic model consisting
of 100,000 cortical spiking neurons having receptors with AMPA, NMDA,
GABAA, and GABAB kinetics and long-term and short-term synaptic plas-
ticity (Izhikevich, Gally, & Edelman, 2004). We found that the network
contained large polychronous groups, illustrated in Figure 12, capable of
recognizing and classifying quite complicated spatiotemporal patterns.

The existence of such groups, requiring finely tuned synaptic weights
and matching (or converging) conduction delays, might seem unlikely in
randomly connected networks with distributions of conduction delays.
However, spike-timing-dependent plasticity (STDP) can select matching
conduction delays and spontaneously organize neurons into such groups,
a phenomenon anticipated by M. Abeles (personal communication with
his students), Bienenstock (1995) and Gerstner, Kempter, van Hemmen, &
Wagner (1996) (see also Changeux & Danchin, 1976, and Edelman, 1987).
An unexpected result is that the number of coexisting polychronous groups
could be far greater than the number of neurons in the network, sometimes
even greater than the number of synapses. That is, each neuron was part
of many groups, firing with one group at one time and with another group
at another time. This is the main result of this letter. In retrospect, it is
not surprising, since the networks we consider have delays, and hence are
infinite-dimensional from a purely mathematical point of view.

In this letter we present a minimal model that captures the essence of this
phenomenon. It consists of a sparse network of 1000 randomly connected
spiking neurons with STDP and conduction delays, thereby representing a
cortical column or hypercolumn. The MATLAB code of the model, spnet,
and its technical description is given in the appendix. In section 2, we
demonstrate that despite its simplicity, the model exhibits cortical-like dy-
namics, including oscillations in the delta (4 Hz) frequency range, 40 Hz
gamma oscillations, and a balance of excitation and inhibition. In section 3,
we describe polychronous groups in detail. Our definition differs from the
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one used by Izhikevich et al. (2004), who relied on the existence of so-
called anchor neurons and hence could not have more groups than neurons
(that is, most of the groups in that study went undetected). We also illustrate
how polychronous groups contribute to cognitive information processing
going beyond the Hopfield-Grossberg or liquid state machine paradigms.
In sections 4 and 5, we discuss some open problems and present some spec-
ulations on the significance of this finding in modeling binding, attention,
and primary (perceptual) consciousness.

2 Dynamics

The model neural network, described in the appendix, preserves impor-
tant ratios found in the mammalian cortex (Braitenberg & Schuz, 1991). It
consists of 1000 randomly connected excitatory (80%) and inhibitory (20%)
neurons. The network is sparse with 0.1 probability of connection between
any two neurons. Behavior of each neuron is described by the simple spik-
ing model (Izhikevich, 2003), which can reproduce 20 of the most funda-
mental neurocomputational features of biological neurons (summarized in
Figure 3). Despite its versatility, the model can be implemented efficiently
(Izhikevich, 2004). Since we cannot simulate an infinite-dimensional system
on a finite-dimensional digital computer, we substitute the network by its
finite-dimensional approximation having time resolution 1 ms.

2.1 Plasticity. Synaptic connections among neurons have fixed conduc-
tion delays, which are random integers between 1 ms and 20 ms. Thus,
the delays in the model are not as dramatic as those observed experimen-
tally in Figure 1. Excitatory synaptic weights evolve according to the STDP
rule illustrated in Figure 4 (Song, Miller, & Abbott, 2000). The magnitude
of change of synaptic weight between a pre- and a postsynaptic neuron
depends on the timing of spikes: if the presynaptic spike arrives at the
postsynaptic neuron before the postsynaptic neuron fires—for example, it
causes the firing—the synapse is potentiated. Its weight is increased ac-
cording to the positive part of the STDP curve in Figure 4 but does not
allow growth beyond a cut-off value, which is a parameter in the model.
In this simulation, we use the value 10 mV, which means that two presy-
naptic spikes are enough to fire a given postsynaptic cell. If the presynaptic
spike arrives at the postsynaptic neuron after it fired, that is, it brings the
news late, the synapse is depressed. Its weight is decreased according to
the negative part of the STDP curve. Thus, what matters is not the timing
of spiking per se but the exact timing of the arrival of presynaptic spikes to
postsynaptic targets.

2.2 Rhythms. Initially, all synaptic connections have equal weights, and
the network is allowed to settle down for 24 hours of model time (which
takes 6 hours on a 1 GHz PC) so that some synapses are potentiated and
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Figure 3: Summary of the neurocomputational properties of biological spik-
ing neurons (Izhikevich 2004). Shown are simulations of the same model (see
equations A.1 and A.2) with different choices of parameters. This model is used
in this study. Each horizontal bar denotes 20 ms time interval. The MATLAB
file generating the figure and containing all the parameters can be downloaded
from the author’s Web site. This figure is reproduced with permission from
www.izhikevich.com. (An electronic version of the figure and reproduction
permission are freely available online at www.izhikevich.com.)

http://www.izhikevich.com
http://www.izhikevich.com
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Figure 4: STDP rule (spike-timing-dependent plasticity, or Hebbian temporally
asymmetric synaptic plasticity): The weight of synaptic connection from pre- to
postsynaptic neuron is increased if the postneuron fired after the presynaptic
spike, that is, the interspike interval t > 0. The magnitude of change decreases
as A+e−t/τ+ . Reverse order results in a decrease of the synaptic weight with
magnitude A−et/τ− . Parameters used: τ+ = τ− = 20 ms, A+ = 0.1, and A− = 0.12.

others are depressed. At the beginning of this settling period, the network
exhibits high-amplitude rhythmic activity in the delta frequency range
around 4 Hz (see Figure 5, top). This rhythm resembles one of the four
fundamental types of brain waves, sometimes called deep sleep waves, be-
cause it occurs during dreamless states of sleep, during infancy, and in some
brain disorders. Of course, the mechanism of generation of this rhythm in
the model is probably different from the one in mammals, since the model
does not have thalamus.

As the synaptic connections evolve according to STDP, the delta oscil-
lations disappear, and spiking activity of the neurons becomes more Pois-
sonian and uncorrelated. After a while, gamma frequency rhythms in the
range 30 to 70 Hz appear, as one can see in Figure 5 (bottom). The mecha-
nism generating this rhythms is often called PING (pyramidal-interneuron
network gamma; Whittington, Traub, Kopell, Ermentrout, & Buhl, 2000):
strong firings of pyramidal neurons excite enough inhibitory interneurons,
leading to transient reciprocal inhibition that temporarily shuts down the
activity. These kinds of oscillations, implicated in cognitive tasks in humans
and other animals, play an important role in the activation of polychronous
groups, as we describe in the next section.

2.3 Balance of Excitation and Inhibition. There are fewer inhibitory
neurons in the network, but their firing rate is proportionally higher, as
one can see in Figure 5. As a result, the network converges to a state with
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Figure 5: Rhythmic activity of the spiking model is evident from the spike
raster. As synaptic weights are evolved according to STDP, initial delta fre-
quency oscillations (top, sec = 1) disappear, relatively uncorrelated Poissonian
activity (middle, sec = 100), and then gamma frequency oscillations (bottom,
sec = 3600) appear.
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Figure 6: Activation of a polychronous group: Spiking activity of the entire
network (top) contains a pattern (middle) that is generated more often than
predicted by chance. The pattern occurs because the connectivity between the
neurons has matching axonal conduction delays (bottom). See Figures 2 and
7 for more detail. Dots denote actual spikes generated by the model; circles
denote the predicted timing of spikes based on the anatomical connectivity and
the delays among the neurons. The simulation time step is 1 ms. Red (black)
dots denote firings of excitatory (inhibitory) neurons.

an approximate balance of excitation and inhibition (Shadlen & Newsome,
1994; Shadlen & Movshon, 1999; van Vreeswijk & Sompolinsky, 1996; Amit
& Brunel, 1997), so that each excitatory neuron fires in the Poissonian man-
ner with the rate fluctuating between 2 and 7 Hz. Even during the episodes
of gamma oscillation, such as the one in Figure 5, the spiking activity of ex-
citatory neurons is not synchronized; the neurons skip most of the gamma
cycles and fire just a few spikes per second (see the open circles in Figure 6,
middle).

Twofold changes of some of the parameters, such as the maximal synaptic
weight, the amount of depression in STDP, or the thalamic input, produce
only transient changes in network dynamics. Neurons adjust their synaptic
weights, balance the excitation and inhibition, and return to the mean firing
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rate between 2 and 7 Hz. Thus, the network maintains a certain homeostatic
state despite intrinsic or extrinsic perturbations.

3 Polychronous Spiking

Although spiking of excitatory neurons looks random and uncorrelated,
there are certain persistent spike-timing patterns that emerge and reoccur
with millisecond precision. An example of such a spike-timing pattern
is presented in Figure 6. Although no apparent order can be seen in the
network activity at the top of the figure, except for a pronounced gamma
oscillation, the pattern denoted by circles in the middle of the figure repeats
itself a few times per hour with ±1 ms spike jitter. Statistical considerations
standard in the synfire chain literature (not presented here; see, e.g., Prut
et al., 1998) suggest that such repetitions are highly unlikely to occur by
chance. There must be some underlying connectivity that generates the
pattern. Indeed, considering the connections between the neurons, depicted
in Figure 6 (bottom), we can see that the neurons are organized into a group,
referred here as being polychronous (i.e., multiple timing), which forces the
neurons to fire with the pattern.

3.1 Definition. Our definition of polychronous groups is based on the
anatomy of the network, that is, on the connectivity between neurons. Let
us freeze the simulation and consider the strongest connections among
neurons, paying special attention to the conduction delays. In Figure 7 the
conduction delays from neurons (125, 275, 490) to neuron 1 are such that
when the neurons fire with the timing pattern (0, 3, 7) ms, their spikes arrive
at neuron 1 at the same time, thereby making neuron 1 fire at 13 ms. The
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Figure 7: Example of a polychronous group: Firing of neurons (125, 275, 490)
with the timing pattern (0, 3, 7) ms results in spikes arriving simultaneously at
neuron 1, then at neurons 172, 695, and 380. This multitiming (polychronous)
activity propagates farther along the network and terminates at neuron 510.
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conduction delays from neurons 125 and 1 to neuron 172 are such that when
the neurons fire with the pattern (3, 13) ms, their spikes arrive at neuron 172
simultaneously, thereby making it fire at 21 ms. Since we know all delays in
the model, we can continue this procedure spike by spike and untangle the
entire group. It consists of 15 neurons, some of them inhibitory; the group
ends at neuron 510.

The group in Figure 7 is defined on a purely anatomical basis; there
is no firing involved yet. The figure tells only that there is a subgraph in
the connectivity matrix of the network so that if neurons (125, 275, 490) fire
with the indicated pattern, the stereotypical activity propagates through the
subgraph. Thus, the group in the figure is only an anatomical prediction of
a possible stereotypical firing pattern. One may never see the pattern, for
example, if the first three neurons never fire.

Whenever the neurons in the figure do fire with the spike-timing pat-
tern determined by the connectivity and delays, we say that the group is
activated and the corresponding neurons polychronize. Typically, firing of
the first few neurons with the right timing is enough to activate most of
the group, as it happens in Figure 6. Notice how activation of the group is
locked to the gamma oscillation; that is, the first three neurons fire at the first
gamma cycle, their spikes travel 10 to 20 ms and arrive at the next four neu-
rons in the next gamma cycle, and so on, resulting in precise stereotypical
activity.

We stress here that 1 ms spike-timing precision is the consequence of
our definition of the group. Of course, neurons in Figure 6 fire many other
spiking patterns with large jitter. We ignore those patterns by calling them
noise.

3.2 Emergence of Groups. Considering various triplets, such as neu-
rons (125, 275, 490) in Figure 7 (left), firing with various patterns, we can
reveal all polychronous groups emanating from the triplets. In the network
of 1000 neurons presented in the appendix, we find over 5000 such groups.
The groups did not exist at the beginning of simulation but appear as a
result of STDP acting on random spiking (Izhikevich et al., 2004). STDP
potentiates some synapses corresponding to connections with converging
(matching) delays and depresses (prunes) other synapses. The plasticity
takes an initially unstructured network and selects firing patterns that are
consistent with the underlying anatomy, thereby creating many strongly
connected subgraphs corresponding to polychronous groups. Since STDP
is always “ON” in the network, groups constantly appear and disappear;
their total number fluctuates between 5000 and 6000. We found a core of
471 groups that appeared and survived the entire duration of 24 hour sim-
ulation.

The groups have different sizes, lengths, and time spans, as we sum-
marize in Figure 8. (A few examples are depicted in Figure 12). Since an
average group consists of 25 neurons, an average neuron is a member of
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Figure 8: Characteristics of polychronous groups (total number is 5269 in a
network of 1000 neurons). (Top left) An example of a polychronous group. (Top
right) Distribution of group sizes, that is, the number of neurons that form each
group. The example group has size 15. (Bottom left) Distribution of groups’ time
spans—the time difference between the firing of the first and the last neuron in
the group. The example group has time span 56 ms. (Bottom right) Distribution
of the longest paths in the groups. The example group has a path of length 5.

131 different groups. Because different groups activate at different times,
the neuron can fire with one group at one time and with another group at
another time.

3.3 Groups Share Neurons. Quite often, different polychronous groups
can share more than one neuron. Two such cases are illustrated in Figure 9.
Neurons (8, 103, 351, 609, 711, 883) belong to two different groups in the
upper half of the figure. However, there is no ambiguity because their
firing order is different; the neurons fire with one spike-timing pattern
at one time (when the first group is activated), with the other pattern at
some other time (when the second group is activated), and with no pattern
most of the time. The lower half of the figure depicts two groups having
eight neurons in common and firing with different spike-timing patterns.
In addition, neurons 838 and 983 fire twice during activation of the second
group. Again, there is no ambiguity here because each polychronous group
is defined not only by its constituent neurons but also by their precise
spiking time.

As an extreme illustration of this property, consider a toy fully connected
network of 5 neurons in Figure 10A. In principle, such a network can exhibit
5! = 240 different firing patterns if we require that each neuron fires only
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Figure 9: Two examples of pairs of groups consisting of essentially the same
neurons but firing with different spike-timing patterns; see also Figure 10.
Neurons of interest are marked with numbers. The list of neurons and their
firing times are provided for each group in the upper-right corners.

once and we distinguish the patterns only on the basis of the order of firing
of the neurons. If we allow for multiple firings, then the number of patterns
explodes combinatorially. However, the connectivity among the neurons
imposes a severe restriction on the possible sustained and reproducible
firing patterns, essentially excluding most of them. Random delays in the
network would result in one, and sometimes two, polychronous groups.
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Figure 10: (A) A toy network of five neurons with axonal conduction delays
and strong synapses (two simultaneous spikes is enough to fire any neuron).
(B) The delays in the network are optimized so that it has 14 polychronous
groups, including two cyclic groups that exhibit reverberating activity with a
time (phase) shift.

The delays in Figure 10A are not random; they were constructed to max-
imize the number of polychronous groups. Although there are only five
neurons, the network has 14 polychronous groups shown in Figure 10B.
Adding a sixth neuron triples the number of groups so that there are more
groups than synapses in the network. Considering toy examples like this
one, it would not be surprising that a network of 1011 neurons (which is
the size of the human brain) would have more groups than the number of
particles in the universe.
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Figure 11: Distribution of frequencies of activation of groups in the simulated
and surrogate (inverted time) spike trains. Each group is found using anatomi-
cal data (connectivity and delays) and then used as a template to scan through
the spike train. The group is said to activate when more than 50% of its neu-
rons polychronize, that is, fire with the prescribed spike-timing pattern with
±1 ms jitter, as in Figure 6. Surrogate data emphasize the statistical significance
of these events.

3.4 Activation of Groups. Our definition of a polychronous group relies
on the anatomy of the network, not on its dynamics. (Of course, the former
and the latter are dependent via STDP.) We say that a group is half-activated
when at least 50% of its constituent excitatory neurons polychronize (i.e., fire
according to the prescribed spike-timing pattern with ±1 ms spike jitter). For
example, the group in Figure 6 is 63% activated because 16 of 19 excitatory
neurons polychronized. Once all the groups are found using the anatomical
data (connectivity and delays), we use each group as a template, scan the
spiking data recorded during a 24 hour period, and count how many times
the group is half-activated. We apply this procedure only to those groups
(total 471) that persist during the 24-hour period.

In Figure 11 we plot the distribution histogram of the averaged frequency
of half-activation of polychronous groups. The mean activation frequency
is 7 times per hour, that is, every 8 minutes, implying that there is a spon-
taneous activation of a group every 1 second (8 × 60/471 ≈ 1 sec). Since
an averaged neuron is a member of 131 different groups, 131 × 7 = 917 of
its spikes per hour are part of activation of a group, which is less than 4%
of the total number of spikes (up to 25,000) fired during the hour. Thus,
the majority of the spikes are noise, and only a tiny fraction is involved in
polychrony. The only way to tell which is which is to consider these spikes
with relation to the spikes of the other neurons.

To test the significance of our finding, we use surrogate data ob-
tained from the spike data by inverting the time. Such a procedure does
not change the mean firing rates, interspike histograms, magnitude of
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cross-correlations, and other meaningful statistics of the spike trains. In par-
ticular, this approach is free from the criticism (Oram, Wiener, Lestienne, &
Richmond, 1999; Baker & Lemon, 2000) that precise firing sequences appear
exclusively by chance in spike rasters with covarying firing rates. Activa-
tion frequency of (noninverted) groups in the surrogate (inverted) spike
raster, depicted as black bars in Figure 11, is much lower, indicating that
group activations are statistically significant events.

We emphasize that our method of analysis of spike trains is drastically
different from the one used to search for synfire chains in in vivo data. We do
not search for patterns in spike data; we know what the patterns are (using
the connectivity matrix and delays); we just scan the spikes and count the
occurrences of each pattern. Apparently such an approach is feasible only
in models.

3.5 Representations. What is the significance of polychronous groups?
We hypothesize that polychronous groups could represent memories and
experience. In the simulation above, no coherent external input to the sys-
tem was present. As a result, random groups emerge; that is, the network
generates random memories not related to any previous experience.

However, coherent external stimulation builds certain groups that rep-
resent this stimulation in the sense that the groups are activated when the
stimulation is present. Different stimuli build different groups even when
the same neurons are stimulated, as we illustrate in Figure 12. Every second
during a 20-minute period, we stimulate 40 neurons, 1, 21, 41, 61, . . . , 781,
either with the pattern (1, 2, . . . , 40) ms or with the inverse pattern
(40, . . . , 2, 1) ms, as we show in the top of Figure 12. Initially, no groups
starting with stimulated neurons existed (we did not explore whether the
stimulation activated any of the existing groups consisting of other neu-
rons). However, after 20 minutes of simulation 25 new groups emerged.
Fifteen of them correspond to the first stimulus; they can be activated when
the network is stimulated with the first pattern. The other 10 correspond
to the second stimulus; that is, they can be activated when the network is
stimulated with the second pattern. Thus, the groups represent the mem-
ory of the two input patterns, and their activation occurs when the network
“sees” the corresponding patterns.

In Figure 13 we depict the time evolution of the largest group corre-
sponding to the first pattern in Figure 12. Notice how the group annexes
neurons, probably at the expense of the other groups in the network. Further
simulation shows that the initial portion of the group is relatively stable,
but its tail expands and shrinks in an unpredictable manner.

Finally, not all groups corresponding to a pattern activate when the
network is stimulated. Because the groups share some neurons and have
excitatory and inhibitory interconnections, they are in a constant state of
competition and cooperation. As a result, each presentation of a stimulus
activates only two to three groups (15%) in a random manner.
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stimulation pattern 1 stimulation pattern 2

20 ms

Figure 12: Persistent stimulation of the network with two spatiotemporal pat-
terns (top) result in the emergence of polychronous groups that represent the
patterns; the first few neurons in each group are the ones being stimulated,
and the rest of the group activates (polychronizes) whenever the patterns are
present.
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Figure 13: Time evolution (growth) of the last (largest) polychronous group
in Figure 12 corresponding to stimulation pattern 1.

3.6 Rate to Spike-Timing Conversion. Neurons in the model use a
spike-timing code to interact and form groups. However, the external input
from sensory organs, such as retinal cells and hair cells in cochlear, arrives
as a rate code, that is, encoded into the mean firing frequency of spiking.
How can the network convert rates to precise spike timings?

It is easy to see how rate to spike-timing conversion could occur at
the onset of stimulation. As the input volley arrives, the neurons getting
stronger excitation fire first, and the neurons getting weaker excitation fire
later or not at all. This mechanism relies on the fact that there is a clear onset
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Figure 14: Rate code to spike-timing code conversion by spiking network with
fast inhibition. (A) The firing rate input (rate code) induces a phasic inhibition
in the network. While the excitatory neurons recover from the inhibition, the
ones that get the strongest input fire first, and the ones getting the weakest input
fire last (or not fire at all). (B) The strength of the rate code input determines
the degree of hyperpolarization of excitatory neurons. Those inhibited less will
fire sooner. This mechanism has the desired logarithmic scaling that makes the
spike-timing code insensitive to the strength of the input (see the text for de-
tail). Open circles—excitatory neurons; filled circles—populations of inhibitory
neurons.

of stimulation, for example, after a visual saccade. What if stimulation
is tonic without a clear beginning or end? We hypothesize that intrinsic
rhythmicity generates internal “saccades” that can parse the rate input into
spike timing, and we discuss three possible mechanisms how this could be
accomplished.

First, the intrinsic rhythmic activity can chop tonic input into “mean-
firing-rate” packets. Since each packet has a well-defined onset, it can be
converted into spike timings according to the mechanism described above:
the neuron receiving the strongest input fires first, and so forth. This mecha-
nism is similar, but not equivalent, to the mechanism proposed by Hopfield
(1995).

The other two mechanisms rely on the action of inhibitory interneu-
rons. In one case, depicted in Figure 14A, inhibitory neurons, being faster,
fire first and inhibit excitatory neurons, thereby resulting in a long in-
hibitory postsynaptic potential (IPSP). The rate with which excitatory
neurons recover from the IPSP depends on their intrinsic properties and
the strength of the overall external input. The stronger the input, the
sooner the neuron fires after the IPSP. Again, the neuron receiving the
strongest input fired first, and the neuron receiving the weakest input fired
last.
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In the third mechanism depicted in Figure 14B, inputs with different
firing rates produce IPSPs of different amplitudes in the excitatory neurons
downstream. As the excitatory neurons recover from the inhibition, the
neurons are ready to fire spikes (due to some other tonic stimulation) at
different moments: the neuron inhibited less would fire first, and the neuron
inhibited more would fire last or not at all.

Since the recovery from inhibition is nearly exponential, the system is
relatively insensitive to the input scaling. That is, a stronger input results in
firing with the same spike-timing pattern but with an earlier onset. Similarly,
a weaker input does not change the spike-timing pattern but only delays its
onset. Let us illustrate this point using two linear dimensionless equations,
v′

i = −vi , i = 1, 2, that model the recovery of the membrane potential from
the inhibition vi (0) = −Ii , where each Ii denotes the amplitude (peak) of
IPSP. The recovery is exponential, xi (t) = −Ii e−t , so the moment of time
each membrane reaches a certain threshold value, say, v = −1, is ti = log Ii .
If we scale the input by any factor (e.g., k Ii ), we translate the threshold
moment by a constant because log k Ii = log k + log Ii , which is the same
for both neurons. Thus, regardless of the scaling of the input, the time dif-
ference log k I1 − log k I2 = log I1 − log I2 is invariant. Thus, in contrast to
Hopfield (1995), we do not need to postulate that the input is already some-
how converted to the logarithmic scale. Synchronized inhibitory spiking
implements the logarithmic conversion and makes spike-timing response
relatively insensitive to the input scaling.

3.7 Stimulus-Triggered Averages. Notice that synchronized inhibitory
activity occurs during gamma frequency oscillations (see Figure 5). Thus,
the network constantly converts rate code to spike-timing code (and back)
via gamma rhythm. Each presentation of a rate code stimulus activates
an appropriate polychronous group or groups that represent the stimulus.
This activation is locked to the phase of the gamma cycle but not to the
onset of the stimulus. We explain this point in Figure 15, which illustrates
results of a typical in vivo experiment in which a visual, auditory, or tactile
stimulus is presented to an animal (we cannot simulate this with the present
network because, among many other things, we do not model thalamus,
the structure that gates inputs to the cortex). Suppose that we record from
neuron A belonging to a polychronous group representing the stimulus.
Since the input comes at a random phase of the internal gamma cycle, the
activation of the group occurs at random moments, resulting in a typical
smeared stimulus-triggered histogram. Such histograms were interpreted
by many biologists as “the evidence” of absence of precise spike-timing
patterns in the brain, since the only reliable effect that the stimulus evokes
is the increased probability of firing of neuron A (i.e., increase in its mean-
firing rate). Even recording from two or more neurons belonging to different
groups would result in broad histograms and weak correlations among the
neurons, because the groups rarely activate together, and when they do,
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Figure 15: Noisy, unreliable response of neuron A is due to the unreliable
activation of the group representing the stimulus. The activation is locked to
the intrinsic gamma cycle, not to the onset of the stimulation, resulting in the
smeared stimulus-triggered histogram. One needs to record from two or more
neurons belonging to the same group to see the precise spike-timing patterns in
the network (the group and the associated gamma rhythm are drawn by hand).

they may activate at different cycles of the gamma rhythm. We see that
“noisy,” unreliable responses of individual neurons to stimuli are the result
of noisy and unreliable activations of polychronous groups. Recordings of
two or more neurons belonging to the same group are needed to see the
precise patterns (relative to the gamma rhythm).

4 Discussion

Simulating a simple spiking network (the MATLAB code is in the appendix),
we discovered a number of interesting phenomena. The most striking one
is the emergence of polychronous groups—strongly interconnected groups
of neurons having matching conduction delays and capable of firing stereo-
typical time-locked spikes with millisecond precision. Thus, such groups
can be seen not only in anatomically detailed cortical models (Izhikevich
et al., 2004) but also in simple spiking networks. Changing some of the
parameters of the model twofold changes the number of groups that can be
supported by the network but does not eliminate them completely. The self-
organization of neurons into polychronous groups is a robust phenomenon
that occurs despite the experimentalist’s efforts to prevent it.
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Our model is minimal; it consists of spiking neurons, axonal conduction
delays, and STDP. All are well-established properties of the real brain.
We hypothesize that unless the brain has an unknown mechanism that
specifically prevents polychronization, the real neurons in the mammalian
cortex must also self-organize into such groups. In fact, all the evidence of
reproducible spike-timing patterns (Abeles, 1991, 2002; Lindsey et al., 1997;
Prut et al., 1998; Villa et al., 1999; Chang et al., 2000; Tetko & Villa, 2001;
Mao et al., 2001; Ikegaya et al., 2004; Riehle et al., 1997; Beggs & Plenz, 2003,
2004; Volman, Baruchi, & Ben-Jacob, 2005) can be used as the evidence of
the existence and activation of polychronous groups.

4.1 How Is It Different from Synfire Chains? The notion of a syn-
fire chain (Abeles, 1991; Bienenstock, 1995; Diesmann et al., 1999; Ikegaya
et al., 2004) is probably the most beautiful theoretical idea in neuroscience.
Synfire chains describe pools of neurons firing synchronously, not poly-
chronously. Synfire activity relies on synaptic connections having equal
delays or no delays at all. Though easy to implement, networks without
delays are finite-dimensional and do not have rich dynamics to support
persistent polychronous spiking. Indeed, in the context of synfire activity,
the groups in Figure 9 could not be distinguished, and the network of five
neurons in Figure 10 would have only one synfire chain showing reverber-
ating activity (provided that all the delays are equal and sufficiently long).
Bienenstock (1995) referred to polychronous activity as a synfire braid.

Synfire chain research concerns the stability of a synfire activity. Instead,
we employ here population thinking (Edelman, 1987). Although many poly-
chronous groups are short-lived, there is a huge number of them constantly
appearing. And although their activation is not reliable, there is a spon-
taneous activation every second in a network of 1000 neurons. Thus, the
system is robust not in terms of individual groups but in terms of popula-
tions of groups.

4.2 How Is It Different from Hopfield-Grossberg Attractor Networks?
Polychronous groups are not attractors from dynamical system point of
view (Hopfield, 1982; Grossberg, 1988). When activated, they result in
stereotypical but transient activity that typically lasts three to four gamma
cycles (less than 100 ms; see Figure 8). Once the stimulation is removed,
the network does not return to a “default” state but continues to be spon-
taneously active.

4.3 How Is It Different from Feedforward Networks? The anatomy
of the spiking networks that we consider is not feedforward but reentrant
(Edelman, 1987). Thus, the network does not “wait” for stimulus to come
but exhibits an autonomous activity. Stimulation perturbs only the intrinsic
activity, as it happens in mammalian brain. As a result, the network does
not have a rigid stimulus-response function. The same stimulus can elicit
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quite different responses because it activates a different (random) subset of
polychronous groups representing the stimulus. Thus, the network operates
in a highly degenerate regime (Edelman & Gally, 2001).

4.4 How Is It Different from Liquid-State Machines? Dynam-
ics of a network implementing liquid-state-machine paradigm (Maass,
Natschlaeger, & Markram, 2002) is purely stimulus driven. Such a net-
work does not have short-term memory, and it cannot place the input in
the context of the previous inputs. The simple model presented here im-
plements some aspects of the liquid-state computing (e.g., it could be the
liquid), but its response is not quite stimulus driven; it depends on the
current state of the network, which in turn depends on the short-term and
long-term experience and previous stimuli. This could be an advantage or
a drawback, depending on the task that needs to be solved.

Let us discuss some interesting open problems and implementation is-
sues that are worth exploring further:

� Finding groups: Our algorithm for finding polychronous groups con-
siders various triplets firing with various spiking patterns and deter-
mines the groups that are initiated by the patterns. Because of the
combinatorial explosion, it is extremely inefficient. In addition, we
probably miss many groups that do not start with three neurons.

� Training: Our training strategy is the simplest and probably the least ef-
fective one: choose a set of “sensory” neurons, stimulate them with dif-
ferent spike-timing sequences, and let STDP form or select/reinforce
appropriate groups. It is not clear whether this strategy is effective
when many stimuli are needed to be learned.

� Incomplete activation: When a group is activated, whether in response
to a particular stimulation or spontaneously, it rarely activates entirely.
Typically, neurons at the beginning of the group polychronize, that
is, fire with the precise spike-timing pattern imposed by the group
connectivity, but the precision fades away as activation propagates
along the group. As a result, the connectivity in the tail of the group
does not stabilize, so the group as a whole changes.

� Stability: Because of continuous plasticity, groups appear, grow (see
Figure 13), live for a certain period of time, and then could suddenly
disappear (Izhikevich et al., 2004). Thus, spontaneous activity of the
network leads to a slow degradation of the memory, and it is not clear
how to prevent this.

� Sleep states: The network can switch randomly between different
states. Some of them correspond to “‘vigilance” with gamma oscilla-
tions, and others resemble “sleep” states, similar to the one in Figure 5



268 E. Izhikevich

(top). It is not clear whether such switching should be prevented or
whether it provides certain advantages for homeostasis of connections.

� Optimizing performance: Exploring the model, we encounter a regime
when the number of polychronous groups was greater than the num-
ber of synapses in the network. However, the network was prone to
epileptic seizures, which eventually lead to uncontrolled, completely
synchronized activity. More effort is required to fine-tune the parame-
ters of the model to optimize the performance of the network without
inducing paroxysmal behavior.

� Context dependence: Propagation delays are assumed to be constant
in the present simulation. In vivo studies have shown that axonal
conduction velocity has submillisecond precision, but it also depends
on the prior activity of the neuron during last 100 ms; hence, it can
change with time in a context-dependent manner (Swadlow, 1974;
Swadlow & Waxman, 1975; Swadlow, Kocsis, & Waxman, 1980). Thus,
a polychronous group may exist and be activated in one time, but can
temporarily disappear at another time because of the previous activity
of its constituent neurons.

� Synaptic scaling: We assumed here that the maximal cut-off synaptic
value is 10 mV, which is slightly more than half of the threshold value
of the pyramidal neuron in the model. Since the average neuron in the
network has 100 presynaptic sources, it implies that 2% of presynaptic
spikes is enough to make it fire. It is interesting, but computation-
ally impossible at present, to estimate the number of different poly-
chronous groups when each neuron has, say, 400 presynaptic sources,
each having maximal value of 2.5 mV. In this case, each group would
be “wider,” since at least four neurons (the same 2%) are needed to
fire any given postsynaptic cell.

� Network scaling: We simulated a network of 103 neurons and found
104 polychronous groups. How does the number of groups scale with
the number of neurons? In particular, how many polychronous groups
are there in a network of 1011 neurons, each having 104 synapses? This
is a fundamental question related to the information capacity of the
human brain.

� Closing the loop: An important biological observation is that organ-
isms are part of the environment. The philosophy at the Neurosciences
Institute (the author’s host institute) is “the brain is embodied, the
body is embedded.” Thus, to understand and simulate the brain, we
need to give the neural network a body and put it into real or virtual
environment (Krichmar & Edelman, 2002). In this case, the network
becomes part of a closed loop: the environment stimulates “sensory”
neurons via sensory organs. Firings of these neurons combined with
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the current state of the network (i.e., the context) activate appropri-
ate polychronous groups, which excite “motor” neurons and produce
appropriate movements in the environment (i.e., response). The move-
ments change the sensory input and close the causality loop.

� Reward and reinforcement learning: Some stimuli bring the reward
(not modeled here) and activate the value system (Krichmar &
Edelman, 2002). It strengthens recently active polychronous groups—
the groups that resulted in the reward. This increases the probability
that the same stimuli in the future would result in activation of the
same groups and thereby bring more reward. Thus, in addition to
passively learning input stimuli, the system can actively explore those
stimuli that bring the reward.

5 Cognitive Computations

Let us discuss possible directions of this research and its connection to
studies of neural computation, attention, and consciousness. This section
is highly speculative; it is motivated by, but not entirely based on, the
simulations described above.

5.1 Synchrony: Good or Bad? Much research on the dynamics of spik-
ing and oscillatory networks is devoted to determining the conditions that
ensure synchronization of the network activity. Many researchers (includ-
ing this author until a few years ago) are under the erroneous assumption
that synchronization is something good and desirable. What kind of in-
formation processing could possibly go on in a network of synchronously
firing neurons? Probably none, since the entire network acts as a single
neuron. Here we treat synchronization (or polychronization) of all neurons
in the network as being an undesirable property that should be avoided.
In fact, synchronization (or polychronization) should be so rare and diffi-
cult to occur by chance that when it happens, even transiently in a small
subset of the network, it would signify something important, something
meaningful, e.g., a stimulus is recognized, two or more features are bound,
attention is paid. All these cognitive events are related to the activation of
polychronous groups, as we discuss in this section.

5.2 Novel Model of Neural Computation. Most of artificial neural net-
work research concerns supervised or unsupervised training of neural nets,
which consists in building a mapping from a given set of inputs to a given
set of outputs. For example, the connection weights of Hopfield-Grossberg
model (Hopfield, 1982; Grossberg, 1988) are modified so that the given
input patterns become attractors of the network. In these approaches, the
network is “instructed” what to do.
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In contrast, we take a different approach in this article. Instead of using
the instructionist approach, we employ a selectionist approach, known
as the theory of neuronal group selection (TNGS) and neural Darwinism
(Edelman 1987). There are two types of selection constantly going on in the
spiking network:

� Selection on the neuronal level: STDP selects subgraphs with matching
conduction delays in initially unstructured network, resulting in the
formation of a large number of groups, each capable of polychronizing,
that is, generating a reproducible spike-timing pattern with millisec-
ond precision. The number of coexisting polychronous groups, called
repertoire of the network, is potentially unlimited.

� Selection on the group level: Polychronous groups are representations
of possible inputs to the network, so that each input selects groups
from the repertoire. That is, every time the input is presented to the
network, a polychronous group (or groups) whose spike-timing pat-
tern resonates with the input is activated (i.e., the neurons constituting
the group polychronize).

Using the analogy with the immune system, where we have antibodies
for practically all possible antigens, even those that do not exist on earth,
we can take our point of view to the extreme and say that the network “has
memories of all past and future events,” with the past events corresponding
to certain groups with assigned representations and the future events corre-
sponding to the large, amorphous, potentially unlimited cloud of available
groups with no representation. Learning of a new input consists of select-
ing and reinforcing an appropriate group (or groups) that resonates with
the input. Assigning the representation (meaning) to the group consists of
potentiating weak connections that link this group with other groups coac-
tive at the same time, that is, putting the group in the context of the other
groups that already have representations (see Figure 16). In this sense, each
polychronous group represents its stimulus and the context. In addition,
persistent stimuli may create new groups, as we show in section 3. In any
case, the input constantly shapes the landscape of the groups present in
the network, selecting and amplifying some groups and suppressing and
destroying others.

The major result of this article is that spiking networks with delays have
more groups than neurons. Thus, the system has potentially enormous
memory capacity and will never run out of groups, which could explain
how networks of mere 1011 neurons (the size of the human neocortex) could
have such a diversity of behavior. Of course, we need to learn how to use
this extraordinary property in models.

5.3 Binding and Gamma Rhythm. Binding is discussed in detail by
Bienenstock (1995) in the context of synfire activity (see also the special
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Figure 16: Due to the potentially unlimited number of coexisting polychronous
groups, the system “has memories of all past and future events,” denoted by
shaded and empty figures, respectively. (A) Past events are represented by
the groups with assigned representations; they activate in response to specific
inputs. Connections between the groups provide the context. (B) Experiencing a
new event consists of selecting a group out of the amorphous set of “available”
groups that resonates with the input. The context is provided by the potentiated
connections between the group and recently active groups.

issue of NEURON (September 1999) on the binding problem). Bienenstock’s
major idea is that dynamic binding of various features of a stimulus corre-
sponds to the synchronization of synfire waves propagating along distinct
chains. The synchronization is induced by weak reentrant synaptic cou-
pling between these chains (see also Seth et al. 2004b). This idea is equally
applicable to polychronous activity.

In Figure 17 we illustrate what could happen when different groups rep-
resenting different features of a stimulus are activated asynchronously (left)
or time locked (right). In the former case, no specific temporal relationship
would exist between firings of neurons belonging to different groups, except
that the firings would be correlated (they are all triggered by the common
input). The dotted lines in Figure 17 (right) are the reentrant connections
between groups that establish the context for each group. These connections
would coordinate activations of the groups and would be responsible for
the time locking (polychronization) in Figure 17 (right). In essence, the four
groups in the figure would act as a single meta-group whose reproducible
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Figure 17: Time-locked activation of groups representing various features of
a stimulus results in binding of the features and increased gamma rhythm.
Each group contributes small gamma oscillation to the network gamma. (Left)
The oscillations average out during the asynchronous activation. (Right) The
oscillations add up during the time-locked activation. Dotted lines: weak reen-
trant connections between the groups that synchronize (or polychronize) their
activation (the groups and the associated gamma rhythm are drawn by hand).

spike-timing pattern represents all features of the stimulus bound together
into a whole.

Each group has a gamma signature indicated by dashed boxes in
Figure 17 (top left) and discussed in section 3 (see Figure 6). Activation
of such a group produces a small oscillation of the local field potential
(LFP) in the gamma frequency. When groups activate asynchronously, their
LFPs would have random phases and cancel each other. When groups ac-
tivate polychronously during binding, their LFPs would add up, resulting
in the noticeable network gamma rhythm and increased synchrony (Singer
& Gray, 1995).

5.4 Modeling Attention. The small size of the system does not allow
us to explore other cognitive functions of spiking networks. In September
2005, the author simulated a detailed thalamo-cortical system having 1011
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representation A representation B

A is activated

Figure 18: Stimuli A and B are both represented by pairs of polychronous
groups with overlapping neurons. Selective attention to representation A (both
groups representing A are active) does not inhibit neurons involved in repre-
sentation B. Because the neurons are shared, they just fire with the spike-timing
pattern corresponding to A.

spiking neurons (i.e., the size of the human brain), 6-layer cortical micro-
circuitry, specific, non-specific, and reticular thalamic nuclei. One second
of simulation took more than one month on a cluster of 27 3-GHz proces-
sors. In a large-scale network, there could be many groups (more than the
15 depicted in Figure 12) that represent any particular input stimulus. The
stimulus alone could activate only a small subset of the groups. However,
weak reentrant connections among the groups may trigger a regenerative
process leading to explosive activation of many other groups represent-
ing the stimulus, resulting in its perception (and possibly increases gamma
rhythm). These groups take up most of the neurons in the network so that
only a relatively few neurons are available for activation of any other group
not related to the stimulus. We might say that the stimulus is the focus of
attention. If two or more stimuli are present, then activation of groups rep-
resenting one stimulus essentially precludes the other stimuli from being
attended. Remarkably, the groups corresponding to the unattended stimuli
are not inhibited. The neurons constituting the groups fire, but with a dif-
ferent spike-timing pattern (see Figure 18). We hypothesize that this mutual
exclusion is related to the phenomenon of selective attention.
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In our view, attention is not a command that comes from the “higher” or
“executive” center and tells which input to attend to. Instead, we view atten-
tion as an emerging property of simultaneous and regenerative activation
(via positive feedback) of a large subset of groups representing a stimulus,
thereby impeding activation of other groups corresponding to other stim-
uli. Multiple stimuli compete for the focus of attention, and the winner is
determined by many factors, mostly the context.

5.5 Consciousness as Attention to Memory. When no stimulation is
present, there is a spontaneous activation of polychronous groups, as in
Figure 11. We hypothesize that if the size of the network exceeds a certain
threshold, a random activation of a few groups representing a previously
seen stimulus may activate other groups representing the same stimulus so
that the total number of activated groups is comparable to the number of
activated groups that occurs when the stimulus is actually present. Not only
would such an event exclude all the other groups not related to the stimu-
lus from being activated, but from the network’s point of view, it would be
similar to the event when the stimulus is actually present and it is the focus
of attention. One can say that the network “thinks” of the stimulus—that is,
it pays attention to the memory of the stimulus. Such “thinking” resembles
“experiencing” the stimulus. A sequence of spontaneous activations corre-
sponding to one stimulus, then another, and so on may be related to the
stream of primary (perceptual or sensory) consciousness (Edelman, 2004),
which can be found in many nonhuman animals. Of course, it does not
explain the high-order (conceptual) consciousness of humans.

Appendix: The Model

The MATLAB code simulating the network activity is in Figure 19. The
upper half of the program initializes the network, and it takes approximately
30 sec on a 1 GHz Pentium PC. The lower half of the program executes the
model, and it takes 5 seconds to simulate 1 second of network activity. The
actual time may vary depending on the firing rate of the neurons.

The MATLAB code and an equivalent 20-times-faster C++ code are also
available on the author’s Web page. Let us describe the details of the model.

A.1 Anatomy. The network consists of N = 1000 neurons with the first
Ne = 800 of excitatory RS type, and the remaining Ni = 200 of inhibitory FS
type (Izhikevich, 2003). The ratio of excitatory to inhibitory cells is 4 to 1, as
in the mammalian neocortex. Each excitatory neuron is connected to M = 100

random neurons, so that the probability of connection is M/N = 0.1, again as
in the neocortex. Each inhibitory neuron is connected to M = 100 excitatory
neurons only. The indices of postsynaptic targets are in the N×M-matrix post.
Corresponding synaptic weights are in the N×M-matrix s. Inhibitory weights
are not plastic, whereas excitatory weights evolve according to the STDP
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 % spnet.m: Spiking network with axonal conduction delays and STDP
% Created by Eugene M.Izhikevich.                February 3, 2004
M=100;                 % number of synapses per neuron
D=20;                  % maximal conduction delay 
% excitatory neurons   % inhibitory neurons      % total number 
Ne=800;                Ni=200;                   N=Ne+Ni;
a=[0.02*ones(Ne,1);    0.1*ones(Ni,1)];
d=[   8*ones(Ne,1);    2*ones(Ni,1)];
sm=10;                 % maximal synaptic strength

post=ceil([N*rand(Ne,M);Ne*rand(Ni,M)]); 
s=[6*ones(Ne,M);-5*ones(Ni,M)];         % synaptic weights
sd=zeros(N,M);                          % their derivatives
for i=1:N
  if i<=Ne
    for j=1:D
      delays{i,j}=M/D*(j-1)+(1:M/D);
    end;
  else
    delays{i,1}=1:M;
  end;
  pre{i}=find(post==i&s>0);             % pre excitatory neurons
  aux{i}=N*(D-1-ceil(ceil(pre{i}/N)/(M/D)))+1+mod(pre{i}-1,N);
end;
STDP = zeros(N,1001+D);
v = -65*ones(N,1);                      % initial values
u = 0.2.*v;                             % initial values
firings=[-D 0];                         % spike timings

for sec=1:60*60*24                      % simulation of 1 day
  for t=1:1000                          % simulation of 1 sec
    I=zeros(N,1);        
    I(ceil(N*rand))=20;                 % random thalamic input 
    fired = find(v>=30);                % indices of fired neurons
    v(fired)=-65;  
    u(fired)=u(fired)+d(fired);
    STDP(fired,t+D)=0.1;
    for k=1:length(fired)
      sd(pre{fired(k)})=sd(pre{fired(k)})+STDP(N*t+aux{fired(k)});
    end;
    firings=[firings;t*ones(length(fired),1),fired];
    k=size(firings,1);
    while firings(k,1)>t-D
      del=delays{firings(k,2),t-firings(k,1)+1};
      ind = post(firings(k,2),del);
      I(ind)=I(ind)+s(firings(k,2), del)';
      sd(firings(k,2),del)=sd(firings(k,2),del)-1.2*STDP(ind,t+D)';
      k=k-1;
    end;
    v=v+0.5*((0.04*v+5).*v+140-u+I);    % for numerical 
    v=v+0.5*((0.04*v+5).*v+140-u+I);    % stability time 
    u=u+a.*(0.2*v-u);                   % step is 0.5 ms
    STDP(:,t+D+1)=0.95*STDP(:,t+D);     % tau = 20 ms
  end;
  plot(firings(:,1),firings(:,2),'.');
  axis([0 1000 0 N]); drawnow;
  STDP(:,1:D+1)=STDP(:,1001:1001+D);
  ind = find(firings(:,1) > 1001-D);
  firings=[-D 0;firings(ind,1)-1000,firings(ind,2)];
  s(1:Ne,:)=max(0,min(sm,0.01+s(1:Ne,:)+sd(1:Ne,:)));
  sd=0.9*sd;
end;

Figure 19: MATLAB code of the spiking network with axonal conduction delays
and spike-timing-dependent plasticity (STDP). It is available on the author’s
Web page: www.izhikevich.com.

http://www.izhikevich.com
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rule discussed in the next section. Their derivatives are in the N×M-matrix
sd , though only the Ne×M-block of the matrix is used.

Each synaptic connection has a fixed integer conduction delay between
1 ms and D = 20 ms, where D is a parameter (M/D must be integer in the
model). We do not model modifiable delays (Huning, Glunder, & Palm,
1998; Eurich, Pawelzik, Ernst, Cowan, & Milton, 1999) or transmission fail-
ures (Senn, Schneider, & Ruff, 2002). The list of all synaptic connections
from neuron i having delay j is in the cell array delays{i, j} . Our MAT-
LAB implementation assigns 1 ms delay to all inhibitory connections, and
1 to D ms delay to all excitatory connections. Although the anatomy of the
model is random, reflecting the connectivity within a cortical minicolumn,
one can implement an arbitrarily sophisticated anatomy by specifying the
matrices post and delays. The details of the anatomy do not matter in the
rest of the MATLAB code and do not slow the simulation.

Once the matrices post and delays are specified, the program initializes
cell arrays pre and aux. The former contains indices of all excitatory neurons
presynaptic to a given neuron, and the latter is an auxiliary table of indices
needed to speed up STDP implementation.

A.2 Spiking Neurons. Each neuron in the network is described by the
simple spiking model (Izhikevich, 2003)

v′ = 0.04v2 + 5v + 140 − u + I (A.1)

u′ = a (bv − u) (A.2)

with the auxiliary after-spike resetting

if v ≥ +30 mV, then
{

v ← c
u ← u + d.

(A.3)

Here variable v represents the membrane potential of the neuron, and u
represents a membrane recovery variable, which accounts for the activation
of K+ ionic currents and inactivation of Na+ ionic currents, and it provides
negative feedback to v. After the spike reaches its apex at +30 mV, which
is not to be confused with the firing threshold, the membrane voltage and
the recovery variable are reset according to equation A.3. Depending on the
values of the parameters, the model can exhibit firing patterns of all known
types of cortical neurons (Izhikevich, 2003). It can also reproduce all of the
20 most fundamental neurocomputational properties of biological neurons
summarized in Figure 3, (see Izhikevich, 2004).

We use (b, c) = (0.2,−65) for all neurons in the network. For excitatory
neurons, we use the values (a , d) = (0.02, 8) corresponding to cortical pyra-
midal neurons exhibiting regular spiking (RS) firing patterns. For inhibitory
neurons, we use the values (a , d) = (0.1, 2) corresponding to cortical
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interneurons exhibiting fast spiking (FS) firing patterns. Better values of
parameters corresponding to different types of cortical neurons, as well as
the explanation of the model, can be found in Izhikevich (2006).

Variable I in the model combines two kinds of input to the neuron: (1)
random thalamic input and (2) spiking input from the other neurons. This
is implemented via N-dimensional vector I.

A.3 Spike-Timing-Dependent Plasticity. The synaptic connections in
the model are modified according to the spike-timing-dependent plasticity
(STDP) rule (Song et al., 2000). We use the simplest and the most effective
implementation of this rule, depicted in Figure 4. If a spike from an excita-
tory presynaptic neuron arrives at a postsynaptic neuron (possibly making
the postsynaptic neuron fire), then the synapse is potentiated (strength-
ened). In contrast, if the spike arrives right after the postsynaptic neuron
fired, the synapse is depressed (weakened).

If pre- and postsynaptic neurons fire uncorrelated Poissonian spike
trains, there are moments when the weight of the synaptic connection is
potentiated, and there are moments when it is depressed. We chose the pa-
rameters of the STDP curve so that depression is stronger than potentiation
and the synaptic weight goes slowly to zero. Indeed, such a connection is
not needed and should be eliminated. In contrast, if the presynaptic neuron
often fires before the postsynaptic one, then the synaptic connection slowly
potentiates. Indeed, such a connection causes the postsynaptic spikes and
should be strengthened. In this way, STDP strengthens causal interactions
in the network.

The magnitude of potentiation or depression depends on the time inter-
val between the spikes. Each time a neuron fires, the variable STDP is reset
to 0.1. Every millisecond, STDP decreases by 0.95*STDP, so that it decays to
zero as 0.1e−t/20(ms), according to the parameters in Figure 4. This function
determines the magnitude of potentiation or depression.

For each fired neuron, we consider all its presynaptic neurons and deter-
mine the timings of the last excitatory spikes arrived from these neurons.
Since these spikes made the neuron fire, the synaptic weights are poten-
tiated according to the value of STDP at the presynaptic neuron adjusted
for the conduction delay. This corresponds to the positive part of the STDP
curve in Figure 4. Notice that the largest increase occurs for the spikes that
arrived right before the neuron fired, that is, the spikes that actually caused
postsynaptic spike.

In addition, when an excitatory spike arrives at a postsynaptic neuron,
we depress the synapse according to the value of STDP at the postsynaptic
neuron. This corresponds to the negative part of the STDP curve in Figure 4.
Indeed, such a spike arrived after the postsynaptic neuron fired, and hence
the synapse between the neurons should be weakened. (The same synapse
will be potentiated when the postsynaptic neuron fires.)
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Instead of changing the synaptic weights directly, we change their deriva-
tives sd, and then update the weights once a second according to the
rule s← s + 0.01 + sd, and sd← 0.9sd, where 0.01 describes activity-
independent increase of synaptic weight needed to potentiate synapses
coming to silent neurons (Turrigiano, Leslie, Desai, Rutherford, & Nelson,
1998; Desai, Cudmore, Nelson, & Turrigiano, 2002). Thus, the synaptic
change is not instantaneous but slow, taking many seconds to develop.
We manually keep the weights in the range between 0 and sm, where sm is
a parameter of the model, typically less than 10 (mV).

Acknowledgments

Anil K. Seth and Bruno van Swinderen read the manuscript and made a
number of useful suggestions. Gerald M. Edelman, Bernie J. Baars, Anil
K. Seth, and Bruno van Swinderen motivated my interest in the studies of
consciousness. The concept of consciousness as attention to memories was
developed in conversations with Bruno van Swinderen. This research was
supported by the Neurosciences Research Foundation.

References

Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge: Cam-
bridge University Press.

Abeles, M. (2002). Synfire chains. In M. A. Arbib (Ed.), The handbook of Brain theory
and neural networks. (pp. 1143–1146). Cambridge, MA: MIT Press.

Amit, D. J., & Brunel N. (1997). Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cereb. Cortex, 7,
237–252.

Baker, S. N., & Lemon R. N. (2000). Precise spatiotemporal repeating patterns in
monkey primary and supplementary motor areas occur at chance levels. J. Neu-
rophysiol., 84, 1770–1780.

Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. J. Neu-
roscience, 23, 11167–11177.

Beggs, J. M., & Plenz, D. (2004). Neuronal avalanches are diverse and precise activity
patterns that are stable for many hours in cortical slice cultures. J. Neuroscience,
24, 5216–5229.

Bellen, A., & Zennaro, M. (2003). Numerical methods for delay differential equations.
Oxford: Clarendon Press.

Bienenstock, E. (1995). A model of neocortex. Network: Comput. Neural Syst., 6, 179–
224.

Braitenberg, V., & Schuz, A. (1991). Anatomy of the cortex: Statistics and geometry.
Berlin: Springer-Verlag.

Bryant, H., & Segundo, J. (1976). Spike initiation by transmembrane current: A white-
noise analysis. J. Physiol. (Lond.), 260, 279–314.

Buzsaki, G., Llinas, R., Singer, W., Berthoz, A., & Christen, Y. (Eds.). (1994). Temporal
coding in the brain. New York: Springer-Verlag.

http://www.ingentaconnect.com/content/external-references?article=0270-6474()23L.11167[aid=7029243]
http://www.ingentaconnect.com/content/external-references?article=0270-6474()23L.11167[aid=7029243]
http://www.ingentaconnect.com/content/external-references?article=0022-3077()84L.1770[aid=1192876]
http://www.ingentaconnect.com/content/external-references?article=0022-3077()84L.1770[aid=1192876]
http://www.ingentaconnect.com/content/external-references?article=0270-6474()24L.5216[aid=6565931]
http://www.ingentaconnect.com/content/external-references?article=0270-6474()24L.5216[aid=6565931]
http://www.ingentaconnect.com/content/external-references?article=0022-3751()260L.279[aid=214977]
http://www.ingentaconnect.com/content/external-references?article=0954-898x()6L.179[aid=4927964]


Polychronization 279

Chang, E. Y., Morris, K. F., Shannon, R., & Lindsey, B. G. (2000). Repeated sequences
of interspike intervals in baroresponsive respiratory related neuronal assemblies
of the cat brain stem. J. Neurophysiol., 84, 1136–1148.

Changeux, J. P., & Danchin, A. (1976). Selective stabilization of developing
synapses as a mechanism for the recall and recognition. Cognition, 33, 25–
62.

de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle, R., &
Bialek, W. (1997). Reproducibility and variability in neural spike trains. Science,
275, 1805–1808.

Desai, N. S., Cudmore, R. H., Nelson, S. B., & Turrigiano, G. G. (2002). Critical periods
for experience-dependent synaptic scaling in visual cortex. Nature Neuroscience,
5, 783–789.

Diesmann, M., Gewaltig, M.-O., & Aertsen, A. (1999). Stable propagation of syn-
chronous spiking in cortical neural networks. Nature, 402, 529–533.

Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection.
New York: Basic Books.

Edelman, G. M. (1993). Neural Darwinism: Selection and reentrant signaling in higher
brain function. Neuron, 10, 115–125.

Edelman, G. M. (2004). Wider than the sky: The phenomenal gift of consciousness.
New Haven, CT: Yale University Press.

Edelman, G. M., & Gally, J. (2001). Degeneracy and complexity in biological systems.
PNAS, 98, 13763–13768.

Eurich, C., Pawelzik, K., Ernst, U., Cowan, J., & Milton, J. (1999). Dynamics of self-
organazed delay adaptation. Phys. Rev. Lett., 82, 1594–1597.

Ferster, D., & Lindstrom, S. (1983). An intracellular analysis of geniculocortical con-
nectivity in area 17 of the cat. Journal of Physiology, 342, 181–215.

Foss, J., & Milton, J. (2000). Multistability in recurrent neural loops arising from
delay. J. Neurophysiol., 84, 975–985.

Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996). A neuronal
learning rule for sub-millisecond temporal coding Nature, 383, 76–78.

Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and archi-
tectures. Neural Networks, 1, 17–61.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. PNAS, 79, 2554–2558.

Hopfield, J. J. (1995). Pattern recognition computation using action potential timing
for stimulus representation. Nature, 376, 33–36.

Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weekly connected neural networks.
New York: Springer-Verlag.

Huning, H., Glunder, H., & Palm, G. (1998). Synaptic delay learning in pulse-coupled
neurons. Neural Computation, 10, 555–565.

Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Fester, D., & Yuste, R. (2004).
Synfire chains and cortical songs: Temporal modules of cortical activity. Science,
304, 559–564.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on
Neural Networks, 14, 1569–1572.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
Transactions on Neural Networks, 15, 1063–1070.

http://www.ingentaconnect.com/content/external-references?article=0022-3077()84L.1136[aid=7029247]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()275L.1805[aid=215115]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()275L.1805[aid=215115]
http://www.ingentaconnect.com/content/external-references?article=0010-0277()33L.25[aid=211314]
http://www.ingentaconnect.com/content/external-references?article=1097-6256()5L.783[aid=7029246]
http://www.ingentaconnect.com/content/external-references?article=1097-6256()5L.783[aid=7029246]
http://www.ingentaconnect.com/content/external-references?article=0031-9007()82L.1594[aid=1949354]
http://www.ingentaconnect.com/content/external-references?article=0028-0836()402L.529[aid=1802692]
http://www.ingentaconnect.com/content/external-references?article=0022-3751()342L.181[aid=217966]
http://www.ingentaconnect.com/content/external-references?article=0028-0836()383L.76[aid=1949355]
http://www.ingentaconnect.com/content/external-references?article=0022-3077()84L.975[aid=2299382]
http://www.ingentaconnect.com/content/external-references?article=0893-6080()1L.17[aid=891153]
http://www.ingentaconnect.com/content/external-references?article=0899-7667()10L.555[aid=2032490]
http://www.ingentaconnect.com/content/external-references?article=0028-0836()376L.33[aid=214619]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()304L.559[aid=6711061]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()304L.559[aid=6711061]
http://www.ingentaconnect.com/content/external-references?article=1045-9227()15L.1063[aid=7029244]
http://www.ingentaconnect.com/content/external-references?article=1045-9227()15L.1063[aid=7029244]
http://www.ingentaconnect.com/content/external-references?article=1045-9227()14L.1569[aid=7029245]
http://www.ingentaconnect.com/content/external-references?article=1045-9227()14L.1569[aid=7029245]


280 E. Izhikevich

Izhikevich, E. M. (2006). Dynamical systems in neuroscience: The geometry of ex-
citability and bursting. Cambridge, MA: The MIT Press.

Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing dynamics of
neuronal groups. Cerebral Cortex, 14, 933–944.

Krichmar, J. L., & Edelman, G. M. (2002). Machine psychology: Autonomous behav-
ior, perceptual categorization and conditioning in a brain-based device. Cerebral
Cortex, 12, 818–830.

Lindsey, B. G., Morris, K. F., Shannon, R., & Gerstein, G. L. (1997). Repeated patterns
of distributed synchrony in neuronal assemblies. J. Neurophysiol., 78, 1714–1719.

Litvak, V., Sompolinsky, H., Segev, I., & Abeles, M. (2003). On the transmission
of rate code in long feed-forward networks with excitatory-inhibitory balance.
J. Neurosci., 23, 3006–3015.

Maass, W., Natschlaeger, T., & Markram, H. (2002). Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural Computation, 14, 2531–2560.

Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical
neurons. Science, 268, 1503–1506.

Mao, B.-Q., Hamzei-Sichani, F., Aronov, D., Froemke, R. C., & Yuste, R. (2001).
Dynamics of spontaneous activity in neocortical slices. Neuron, 32, 883–898.

Mazurek, M. E., & Shadlen, M. N. (2002). Limits to the temporal fidelity of cortical
spike rate signals. Nat. Neurosci., 5, 463–471.

Miller, R. (1996a). Neural assemblies and laminar interactions in the cerebral cortex.
Biol. Cybern., 75(3), 253–261.

Miller, R. (1996b). Cortico-thalamic interplay and the security of operation of neural
assemblies and temporal chains in the cerebral cortex. Biol. Cybern., 75(3), 263–275.

Oram, M. W., Wiener, M. C., Lestienne, R., & Richmond, B. J. (1999). Stochastic
nature of precisely timed spike patterns in visual system neuronal responses.
J. Neurophysiol., 81, 3021–3033.

Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Slovin, H., & Abeles, M. (1998).
Spatiotemporal structure of cortical activity: Properties and behavioral relevance.
J. Neurophysiol., 79, 2857–2874.

Reinagel, P., & Reid, R. C. (2002). Precise firing events are conserved across neurons.
J. Neurosci., 22, 6837–6841.

Riehle, A., Grün, S., Diesmann, M., & Aertsen, A. (1997). Spike synchronization and
rate modulation differentially involved in motor cortical function. Science, 278,
1950–1953.

Salami, M., Itami, C., Tsumoto, T., & Kimura, F. (2003). Change of conduction velocity
by regional myelination yields constant latency irrespective of distance between
thalamus and cortex. PNAS, 100, 6174–6179.

Senn, W., Schneider, M., & Ruf, B. (2002). Activity-dependent development of axonal
and dendritic delays, or, why synaptic transmission should be unreliable. Neural
Computation, 14, 583–619.

Seth, A. K., McKinstry, J. L., Edelman, G. M., & Krichmar, J. L. (2004a). Spatiotemporal
processing of whisker input supports texture discrimination by a brain-based
device. In S., Schaal, A., Billard, S., Vijayakumar, J., Hallam, & J.-A., Meyer (Eds.),
From animals to animats 8: Proceedings of the Eighth International Conference on the
Simulation of Adaptive Behavior. Cambridge, MA: MIT Press.

http://www.ingentaconnect.com/content/external-references?article=0022-3077()78L.1714[aid=304783]
http://www.ingentaconnect.com/content/external-references?article=0270-6474()23L.3006[aid=6501497]
http://www.ingentaconnect.com/content/external-references?article=0899-7667()14L.2531[aid=5177322]
http://www.ingentaconnect.com/content/external-references?article=0896-6273()32L.883[aid=7029250]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()268L.1503[aid=214626]
http://www.ingentaconnect.com/content/external-references?article=0022-3077()81L.3021[aid=1510461]
http://www.ingentaconnect.com/content/external-references?article=1097-6256()5L.463[aid=6230682]
http://www.ingentaconnect.com/content/external-references?article=0022-3077()79L.2857[aid=860888]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()278L.1950[aid=212741]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()278L.1950[aid=212741]
http://www.ingentaconnect.com/content/external-references?article=0270-6474()22L.6837[aid=5629855]
http://www.ingentaconnect.com/content/external-references?article=0899-7667()14L.583[aid=7029249]
http://www.ingentaconnect.com/content/external-references?article=0899-7667()14L.583[aid=7029249]
http://www.ingentaconnect.com/content/external-references?article=0340-1200()75:3L.263[aid=7029248]
http://www.ingentaconnect.com/content/external-references?article=0340-1200()75:3L.253[aid=6422832]


Polychronization 281

Seth, A. K., McKinstry, J. L., Edelman, G. M., & Krichmar, J. L. (2004b). Visual binding
through reentrant connectivity and dynamic synchronization in a brain-based
device. Cerebral Cortex, 14, 1185–1199.

Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organi-
zation. Curr. Opin. Neurobiol., 4, 569–579.

Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons:
Implications for connectivity, computation and information coding. J. Neurosci.,
18, 3870–3896.

Shadlen, M. N., & Morshon, J. A. (1999). Synchrony unbound: A critical evaluation
of the temporal binding hypothesis. Neuron, 24, 67–77.

Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal corre-
lation hypothesis. Annual Review of Neuroscience, 18, 555–586.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity. Nature Neurosci., 3, 919–926.

Stewart, I., Golubitsky, M., & Pivato, M. (2003). Symmetry groupoids and patterns
of synchrony in coupled cell networks. SIAM J. Appl. Dynam. Sys., 2, 606–646.

Strehler, B. L., & Lestienne, R. (1986). Evidence on precise time-coded symbols and
memory of patterns in monkey cortical neuronal spike trains. PNAS, 83, 9812–
9816.

Swadlow, H. A. (1974). Systematic variations in the conduction velocity of slowly
conducting axons in the rabbit corpus collosum. Experimental Neurology, 43, 445–
451.

Swadlow, H. A. (1985). Physiological properties of individual cerebral axons studied
in vivo for as long as one year. J. Neurophysiology, 54, 1346–1362.

Swadlow, H. A. (1988). Efferent neurons and suspected interneurons in binocular
visual cortex of the awake rabbit: Receptive fields and binocular properties.
J. Neurophysiol., 88, 1162–1187.

Swadlow, H. A. (1992). Monitoring the excitability of neocortical efferent neurons to
direct activation by extracellular current pulses. J. Neurophysiol., 68, 605–619.

Swadlow, H. A. (1994). Efferent neurons and suspected interneurons in motor cortex
of the awake rabbit: Axonal properties, sensory receptive fields, and subthreshold
synaptic inputs. J. Neurophysiology, 71, 437–453.

Swadlow, H. A., Kocsis, J. D., & Waxman, S. G. (1980). Modulation of impulse
conduction along the axonal tree. Ann. Rev. Biophys. Bioeng., 9, 143–179.

Swadlow, H. A., & Waxman, S. G. (1975). Observations on impulse conduction along
central axons. PNAS, 72, 5156–5159.

Tetko, I. V., & Villa, A. E. P. (2001). A pattern grouping algorithm for analysis of
spatiotemporal patterns in neuronal spike trains. 2: Application to simultaneous
single unit recordings. Journal of Neuroscience Methods, 105, 15–24.

Turrigiano, G. G., Leslie, K. R., Desai N. S., Rutherford, L. C., & Nelson, S. B. (1998).
Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature,
391, 892–896.

van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with
balanced excitatory and inhibitory activity. Science, 274, 1724–1726.

Villa, A. E., Tetko, I. V., Hyland, B., & Najem, A. (1999). Spatiotemporal activity
patterns of rat cortical neurons predict responses in a conditioned task. Proc.
Natl. Acad. Sci. USA, 96, 1106–1111.

http://www.ingentaconnect.com/content/external-references?article=0270-6474()18L.3870[aid=215172]
http://www.ingentaconnect.com/content/external-references?article=0270-6474()18L.3870[aid=215172]
http://www.ingentaconnect.com/content/external-references?article=0959-4388()4L.569[aid=214667]
http://www.ingentaconnect.com/content/external-references?article=1097-6256()3L.919[aid=1510368]
http://www.ingentaconnect.com/content/external-references?article=0147-006x()18L.555[aid=212607]
http://www.ingentaconnect.com/content/external-references?article=0896-6273()24L.67[aid=1469818]
http://www.ingentaconnect.com/content/external-references?article=0014-4886()43L.445[aid=7029258]
http://www.ingentaconnect.com/content/external-references?article=0022-3077()68L.605[aid=7029255]
http://www.ingentaconnect.com/content/external-references?article=0022-3077()54L.1346[aid=7029257]
http://www.ingentaconnect.com/content/external-references?article=0084-6589()9L.143[aid=7029254]
http://www.ingentaconnect.com/content/external-references?article=0022-3077()71L.437[aid=1480902]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()274L.1724[aid=214588]
http://www.ingentaconnect.com/content/external-references?article=0028-0836()391L.892[aid=533063]
http://www.ingentaconnect.com/content/external-references?article=0028-0836()391L.892[aid=533063]
http://www.ingentaconnect.com/content/external-references?article=0165-0270()105L.15[aid=7029253]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()96L.1106[aid=7029252]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()96L.1106[aid=7029252]


282 E. Izhikevich

Volman, V., Baruchi, I., & Ben-Jacob, E. (2005). Manifestation of function-follow-form
in cultured neuronal networks. Physics Biology, 2, 98–110.

Wiener, J., & Hale, J. K. (1992). Ordinary and delay differential equations. New York:
Wiley.

Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000).
Inhibition-based rhythms: Experimental and mathematical observations on net-
work dynamics. Int. J. Psychophysiol., 38, 315–336.

Received January 31, 2005; accepted June 14, 2005.

http://www.ingentaconnect.com/content/external-references?article=0167-8760()38L.315[aid=3463147]

